«РМ Нанотех»: технологии переработки молочной сыворотки

Концентрирование молочной сыворотки с помощью ультра- и нанофильтрационных мембранных элементов производства «РМ Нанотех»

Сыворотка является серьезной экологической пробле-мой молочного производства из-за большой биологической потребности в кислороде для ее утилизации. В исходной форме из-за малой концентрации сухих веществ она почти не имеет ценности, но компоненты сыворотки применимы в качестве добавок в продукты питания, в корма для животных и как промышленное сырье для других отраслей. Компоненты сыворотки могут быть сгущены и фракционированы с помощью мембранных технологий. За счет этого отходы производства превращаются в ценный продукт для рынка.

При производстве 1 т сыра или творога образуется около 9 т сыворотки. В среднем на одном молокозаводе получают около 100 т сыворотки в сутки. В результате в России за год образуется более 5 млн т сыворотки, при этом используется только 20%. Около 200 000 тон в пересчете на сухую сыворотку ежегодно сбрасывается в качестве отходов, но при этом более 70 000 тон в год сухой сыворотки импортируется.

Освоение мембранных процессов, таких как обратный осмос, нанофильтрация и ультрафильтрация, для извлечения полезных веществ из отходов молочной промышленности (какими является молочная сыворотка – творожная или подсырная) при производстве сыра или творога позволит не только значительно сократить стоки, но и значительно снизит затраты на транспортировку и сушку при производстве сухих продуктов [1, 3].

Средний состав молочной сыворотки представлен в таблице 1 [1].

Таблица 1. Средний состав молочной сыворотки

Показатель	Нормы для сыворотки			
	подсырной	творожной	Кезеиновой	
Плотность, кг/м³, не менее	1023	1023	1023	
Кислотность, °Т, не более	20	75	70	
Массовая доля сухих веществ, %, не менее	4	4	4	
В том числе: лактозы, %, не менее жира, %, не более	4,0 0,1	3,5 0,2	3,5 0,1	

Для концентрирования сывороточного белка (частицы массой 10 кДа и выше) обычно применяют ультрафильтрацию. Нанофильтрация (граница разделения 200 Да) используется для концентрирования белков и лактозы. С помощью обратного осмоса можно сконцентрировать все компоненты сыворотки. В результате получается прозрачная обессоленная вода [1, 3, 4].

При переработке сыворотки мембранными методами следует учитывать зависимость плотности и вязкости сыворотки от температуры [1]. Наиболее оптимальной является температура в диапазоне 50–60 °C, где вязкость сыворотки снижается почти в три раза. При температуре более 60 °C начинается денатурация белка.

В работе представлены результаты экспериментов по концентрированию молочной (творожной) сыворотки как в одну ступень с помощью нанофильтрационных элементов, так и в двухступенчатой схеме, где концентрирование проводилось сначала на ультрафильтрационном мембранном элементе, а затем, после извлечения молочной кислоты, на нанофильтрационном.

Для экспериментов использовалась свежая творожная сыворотка. Содержание сухих веществ в сыворотке составляло 4%, из них 3% — лактоза и 1% — белок, что соответствует данным, представленным в таблице 1. Для проведения экспериментов были выбраны мембранный элемент NanoUF 4040-20 с отсечкой белков с молекулярным весом около 20 кДальтон и нанофильтрационный мембранный элемент типа NanoNF 4040 с отсечкой белков с молекулярным весом около 200 Дальтон.

Таблица 2. Плотность и вязкость сыворотки в зависимости от температуры [2]

Температура, °С	19	32	40	50	60
Плотность, кг/м ³	1024,8	1023,4	1022,5	1022	1021
Вязкость, мПа×с	2,72	1,97	1,51	1,11	0,66

Таблица 3. Свойства нанофильтрационных и ультрафильтрационных мембранных элементов

Модель	Материал мембраны	Рабочая температура, °С	Диапазон рН при работе/мойке	Удельная производительность, л/(ч×м²×атм)	Граница отсечки белков, Дальтон
NanoNF 4040	Полипиперазинамид	4-55	1-10 / 1-12	2-6	200
NanoUF 4040-20	Полиэфирсульфон	4-55	1-12/1-13	50-150	20 000
NanoUF 4040-50	Полиэфирсульфон	4-55	1-12/1-13	80-240	50 000

Мембранные элементы серии NanoUF и NanoNF имеют особенную конструкцию, которая обеспечивает отсутствие застойных зон внутри элемента как со стороны фильтрата (пермеата), так и со стороны концентрата (ретентата). Это обеспечивается прежде всего отсутствием уплотнительных манжет и прокладок, а также отсутствием внешней оболочки мембранного элемента, роль которой выполняет корпус, куда помещен мембранный элемент (технология Full-Fit).

Специальная конструкция мембранных пакетов, из которых собран рулонный элемент, обеспечивает отсутствие застойных зон внутри самого мембранного элемента. Оптимальная толщина и геометрия полипропиленовой турбулизирующей сетки, которая расположена между мембранными пакетами и между внешним мембранным пакетом и корпусом, обеспечивает высокую скорость протекания рабочей жидкости над поверхностью мембраны, что значительно снижает риск образования осадка на поверхности мембраны.

Свойства мембранных элементов компании ЗАО «РМ Нанотех» представлены в таблице 3.

На схеме 1 представлена технологическая схема пилотной установки для концентрирования молочной сыворотки.

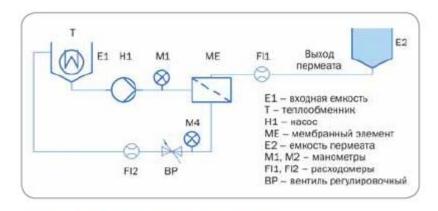


Схема 1. Технологическая схема пилотной установки

Было проведено два эксперимента. В первом эксперименте планировалось сначала выделить из сыворотки белок с помощью ультрафильтрации, а затем пермеат повторно использовать для концентрации лактозы с помощью нанофильтрации.

Во втором эксперименте исходная сыворотка концентрировалась сразу с помощью нанофильтрации. Технологические параметры установки в обоих экспериментах представлены в таблице 4.

Таблица 4. Режимы работы пилотной установки

Процесс	Исходный продукт	Расход пермеата, л/ч	Входное давление, бар	Температура сыворотки, °С	Степень извлечения пермента, %
Уф	Сыворотка	150	5	23-38	7
НФ	Сыворотка	140	18–27	26-31	10
НФ (после УФ)	ПермеатУФ	150	14–17	26-38	13

В связи с тем, что температура сыворотки в процессе экспериментов постепенно повышалась, все результаты пересчитывались и приводились к одной температуре (40 °C) с учетом зависимости вязкости от температуры, см. таблицу 2.

На диаграмме 1 представлена зависимость удельной производительности ультрафильтрационной мембраны (Anorm 40) при 40 °C. В связи с тем, что производительность мембранного элемента зависит от вязкости, которая, в свою очередь, зависит от температуры, данные по производительности были пересчитаны и приведены к одной температуре – 40 °C.

Диаграмма 1. Зависимость удельной производительности ультрафильтрационной мембраны (Anorm 40) при температуре 40 °C

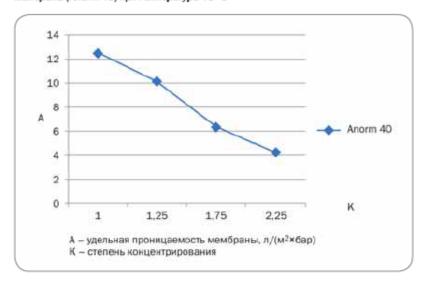
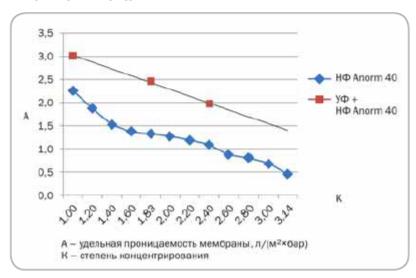



Диаграмма 2. Зависимость удельной производительности нанофильтрационной мембраны при температуре 40 °C

На диаграмме 2 представлена зависимость удельной производительности нанофильтрационной мембраны при температуре 40 °C в зависимости от степени концентрирования в двух экспериментах, при нанофильтрации пермеата после ультрафильтрации (У Φ +H Φ) и при концентрировании сырой сыворотки (Н Φ).

Как следует из диаграмм, предельная степень концентрирования пермеата после ультрафильтрации выше, чем сырой сыворотки. Данные, представленные на диаграммах 1 и 2, можно использовать при расчете производительности промышленных мембранных систем, предназначенных для концентрирования молочной сыворотки.

При снижении производительности мембраны ниже 0,5 л/(м₂ бар) процесс концентрирования был остановлен. В результате экспериментов была достигнута степень концентрирования около 3. Результаты экспериментов представлены в таблице 5.

Таблица 5. Результаты концентрирования молочной сыворотки с помощью ультрафильтрации и нанофильтрации

	Концентрация сухих веществ			
	Исходная сыворотка	Пермеат	Ретентат	
Исходная концентрация сухих веществ	4,04%	-	-	
Ультрафильтрация	4,04%	3,71%	5,47%	
Нанофильтрация (после УФ)	3,71%	0,17%	9,02%	
Нанофильтрация	4,04%	0,81%	10,42%	

Таблица 6. Концентрирование компонентов молочной сыворотки при нанофильтрации на промышленном предприятии [3]

	Концентрация сухих веществ			
	Исходная сыворотка	Пермент	Ретентат	
Концентрация сухих веществ	6%	0,51%	19,98%	
В том числе: лактозы	3,6%	0,07%	12,85%	

К сожалению, не удалось провести эксперименты при оптимальной для мембранного разделения температуре около 50-60 °C, где ожидаемая степень концентрирования могла составить до 3-4 раз, см. таблицу 6.

Применение концентрированной молочной сыворотки

Использование белка, полученного из сыворотки с помощью ультра- или нанофильтрации, позволяет увеличить выход:

- творога на 30–35%,
- мягких сыров на 15–25%,
- твердых сыров на 10-15%.

Для маленьких объемов сыворотки (10–50 т/сутки) рентабельно только производство концентрата для корма животных. Для этого сыворотку обезвоживают обратным осмосом или нанофильтрацией. Применять концентрированную сыворотку (ретентат) можно прямо на месте производства: с содержанием сухих веществ до 12% – для выпойки свиней, с содержанием сухих веществ до 15% – для выпойки телят. Ретентат с содержанием сухих веществ 18–20% можно транспортировать для дальнейшей переработки (сушки). Показано [3], что нанофильтрация снижает энергозатраты на концентрирование подсырной сыворотки до 30 руб. на 1 т испарённой влаги.

Чистую лактозу после высушивания применяют в хлебопечении, для производства продуктов детского питания, напитков, а также как компонент таблетированных лекарственных препаратов. Гидролиз лактозы приводит к образованию лактулозы, позволяет удвоить сладость лактозы. При низком уровне гигиены переработки и без деминерализации сыворотку можно использовать на корм животным или, подвергнув ферментации, получить кормовые дрожжи, биоэтанол, биогаз, молочную кислоту, пенициллин, стартовые культуры и пр.

Заключение

Выполненные работы показали, что мембранные элементы компании ЗАО «РМ Нанотех» серии NanoUF и NanoNF могут быть успешно использованы в молочной промышленности для концентрирования белков и лактозы из молочной сыворотки.

Использование нанофильтрации позволяет сконцентрировать сыворотку более чем в три раза.

Двухступенчатая схема позволяет выделить белок на первой стадии и лактозу на второй. Кроме того, эта схема позволяет использовать мембранные (электродиализ) или ионообменные методы удаления молочной кислоты перед стадией нанофильтрации [4]. Полученные данные могут быть использованы при проектировании мембранных промышленных систем для переработки молочной сыворотки.

А.Р. СИДОРОВ,

ЗАО «РМ Нанотех», г. Владимир,

С.Ю. ЛАРИОНОВ,

ЗАО «НПК Медиана-Фильтр», Москва,

в.г. дзюбенко,

ЗАО «РМ Нанотех», г. Владимир

СПИСОК ЛИТЕРАТУРЫ:

- 1. Храмцов А.Г., Нестеренко П.Г., Технология продуктов из молочной сыворотки: Учебное пособие. М.: ДеЛи принт, 2003.
- 2. Материалы XXXVII научно-технической конференции по итогам работы профессорско-преподавательского состава СевКавГТУ за 2007 год. Том первый. Естественные и точные науки. Технические и прикладные науки. Ставрополь: СевКавГТУ, 2008, 236 с.
- 3. Евдокимов И.А., Володин Д.Н., Бессонов А.С., Золотарева М.С., Поверин А.П., Реальные мембранные технологии. Молочная промышленность, 2010, № 1, с. 49–50.
- 4. Евдокимов И.А. Мембранные технологии переработки молочной сыворотки: синтез науки и практики // Материалы V Международной конференции «Низкотемпературные и пищевые технологии в XXI веке», СПбГУНиПТ, 2011. С. 258–259.